機器分析学演習 クロマトグラフィーの理論

名称	数式	備考
capacity factor(定義)	$k' = K rac{V_{ m s}}{V_{ m m}}$	K は分配係数
		$V_{ m s},V_{ m m}$ は固定相,移動相の体積
capacity factor(時間表示)	$k' = \frac{t - t_0}{t_0}$	t は成分の保持時間
		t_0 はカラムに保持されない成分の溶出時間
保持容量	$V = V_{\rm m}(1 + k') = V_{\rm m} + KV_{\rm s}$	$V_{ m m}$ を死容量という
		$V-V_{ m m}$ を調整保持容量という
分離係数	$\alpha = \frac{k_{\rm B}'}{k_{\rm A}'} = \frac{t_{\rm B} - t_0}{t_{\rm A} - t_0}$	$t_{ m A},~t_{ m B}$ は成分 ${ m A,B}$ の保持時間($t_{ m A} < t_{ m B}$)
		$k_{ m A}^{\prime},~k_{ m B}^{\prime}$ は成分 ${ m A,B}$ の capacity factor
$ ule{TLC}$ における $R_{ m f}$ 値	$R_{\rm f} = \frac{\ell_0}{\ell} = \frac{1}{1+k'} = \frac{t_0}{t}$	ℓは成分の移動距離
		ℓ_0 は展開溶媒の移動距離
理論段数(定義)	$N = 16 \left(\frac{t}{W}\right)^2$	t は保持時間
		W はピーク幅
理論段数(半値幅による式)	$N = 5.54 \left(\frac{t}{W_{h/2}}\right)^2$	$W_{h/2}$ は半値幅
		(ピーク高さが半分の位置 $h/2$ でのピーク幅)
理論段高さ	$HETP = \frac{L}{N}$	L はカラム長
		値が小さいほどカラムの分離性能が高い
van Deemter の式	$HETP = A + \frac{B}{u_0} + Cu_0$	A,B,C は経験的定数
		$d(HETP)/du_0 = 0 \iff u_0 = \sqrt{B/C}$
分離度(定義)	$R_{\rm s} = \frac{2(t_{\rm B} - t_{\rm A})}{W_{\rm A} + W_{\rm B}} = \frac{1.18(t_{\rm B} - t_{\rm A})}{W_{{\rm A},h/2} + W_{{\rm B},h/2}}$	$t_{ m A},~t_{ m B}$ は成分 ${ m A,B}$ の保持時間($t_{ m A} < t_{ m B}$)
		$W_{ m A}, W_{ m B}, W_{ m A,h/2}, W_{ m B,h/2}$ は成分 $ m A,B$ のピーク幅,半値幅
分離度(α による式)	$R_{\rm s} = \frac{\sqrt{N}}{4} \frac{\alpha - 1}{\alpha} \frac{k_{\rm B}'}{1 + k_{\rm B}'}$	$lpha = k_{ m B}'/k_{ m A}$ (ただし $t_{ m A} < t_{ m B}$)
		N は理論段数
変換率	$cnv = 1 - \frac{C_{R,t}}{C_{R,0}} = 1 - \frac{A_{R,t}}{A_{R,0}}$	$C_{\mathrm{R},t},C_{\mathrm{R},0}$ は反応物の濃度
		$A_{\mathrm{R},t},A_{\mathrm{R},0}$ は反応物のピーク面積
収率	$yld = \frac{C_{P,t}}{C_{R,0}}$	$C_{\mathrm{P},t}$ は生成物の濃度
		(通常は検量線から求める)
選択率	$slc = \frac{yld}{cnv} = \frac{C_{P,t}}{C_{R,0} - C_{R,t}}$	たいていの場合
		変換率,収率から間接的に求める

MEMO